
Doppler: A liquidity bootstrapping ecosystem
Jan 2024

Austin Adams
austin@whetstone.cc

Matt Czernik
matt@whetstone.cc

Clement Lakhal
clement@whetstone.cc

Kaden Zipfel
kadenzipfel@gmail.com

Abstract
Doppler is a liquidity bootstrapping ecosystem that facilitates liq-
uidity provision by introducing a new primitive: a dutch-auction
dynamic bonding curve, which is used to source initial two-sided
liquidity. This mechanism is a self-executing and non-custodial
Uniswap v4 hook designed for automated initial price discovery for
arbitrary assets. Additionally, Doppler provides infrastructure to al-
low ecosystems to go from token deployment to an arbitrary liquid
generalized automated market maker without user intervention.

1 Introduction
The rise of automated market makers (AMMs) has fundamentally
transformed digital asset trading. Protocols, such as the Uniswap
Protocol [4], have resulted in a shift towards automated pricing
algorithms. This shift has created an exponential increase in the
number of traded onchain assets, with more than 910,0001 unique
traded assets created as of writing. Despite this, token projects
continue to struggle to bootstrap liquidity, and oftentimes must
outsource to automated liquidity management protocols or onchain
market making desks, which generally take a sizeable portion of
the provided assets.

However, one benefit of blockchain-based ecosystems is that
they allow for programmable markets. Just as the Uniswap Protocol
is designed to facilitate trading through an 𝑥𝑦 = 𝑘 model, a similar
model could be created to bootstrap liquidity. Indeed, we have
already seen such projects on both Solana, Tron, and Ethereum.

Traditionally, the problemwith creating newmarket structures is
the difficulty of creating customized AMM protocols, which require
expertise and significant time and capital investment. However,
the forthcoming Uniswap v4 [2] improves the customization and
integrator experience of AMMs by introducing hooks, which can
execute developer-defined logic at specific points in the transac-
tion’s lifecycle. While Uniswap v3 [4] focused on optimizing the
most common trading flow, Uniswap v4 allows custom market
structure models for specialized tasks.

2 Background
The proliferation of AMMs has created new challenges in market
structure and liquidity formation. Traditional AMM designs require
significant upfront capital commitments from token projects. For
instance, Uniswap v2 [3] requires two-sided liquidity provision,

1Source: https://dune.com/queries/3891972

creating both financial and technical barriers to market formation.
Projects must not only secure substantial capital for both sides of
the pool but also determine appropriate initial pricing which carries
significant risk of capital loss through mispricing. While projects
such as Uniswap v3 [4] have utilized single-sided liquidity, which
requires only one asset, token projects must still take an initial
stance on the asset’s price.

The challenge of initial price discovery is particularly problem-
atic for initial liquidity provision. Generally, because of arbitrage
forces, the pool already liquid and is in-line with the market price,
so adding more liquidity does not create the potential for more
losses. However, initial liquidity provision does not have this guar-
antee. Projects face a difficult trade-off: setting initial prices too low
results in immediate capital loss through arbitrage, while setting
prices too high inhibits trading activity entirely.

A fundamental nature of permissionless systems, like email or
TCP, is the vast amount of value-less user generated content. This
type of market structure is formalized in Oh [10], whichmodels non-
fungible tokens (NFTs) as "digital Veblen goods." The implication
of this model is that the purchasing of an asset greatly increases
likelihood that a product is valuable.

This market dynamic is well-supported by static bonding curves
implemented in projects like friendtech. Bonding curves start as-
sets with cheap prices with the next trade being marginally more
expensive than the previous. However, these protocols can run into
significant issues from programmatic bots, who buy these cheap
assets and instantly sell if the price increases. This strategy is very
low risk, because the bonding curves are static. The initial buyers
of the tokens cannot lose any money. The price either goes up as
new users buy, allowing the initial buyers to sell and collect a profit,
or (if no one bought) they sell at the original price they paid (due to
the static bonding curve). Single-sided liquidity bootstrapping from
Intuitive Launch Pool functions similarly to this model, utilizing
concentrated liquidity math as the bonding curve.

Doppler provides a dutch-auction dynamic bonding curves liq-
uidity bootstrapping hook and a token factory to create ERC20s
with known bytecode. This allows ecosystems to go from token
deployment to liquid generalized automated market maker, like
Uniswap v2 or Uniswap v4, without user intervention.

• Dutch-auction Dynamic Bonding Curves: Price discovery
of assets is facilitated through a dutch-auction dynamic
bonding curve. This mechanism is built on top of Uniswap
v4, facilitating automated price discovery and auctioning

1



Adams

without intervention. Additionally, user experience should
be identical to and supported by the current swapping ex-
perience.

• Token contract Factory: The ecosystem utilizes a token con-
tract factory to deploy ERC20s with known bytecode. This
bytecode removes many of the malicious implementations
prevalent in the EVM ecosystems and allows 3rd party inter-
faces to quickly check bytecode. Additionally, this factory
and hook combine to enforce invariants on token trading.

• Direct to generalized liquidity : Once the required tokens
are bootstrapped to create a liquid pool, the Uniswap v4
hook contract deposits the funds into a generalized AMM
without intervention. However, unlike other liquidity boot-
strapping implementations, the underlying LP share to-
kens are not burned. In future versions, users can choose
between Uniswap v2, a CFMM on Uniswap v4, or any
arbitrary Uniswap Protocol pools.

• Time-locked liquidity: Liquidity tokens for the generalized
liquidity pool are time-locked initially, but can be with-
drawn at a later date. This is to ensure that a community
around that token can optionally utilize these funds at a
later date.

The following sections provide in-depth explanations of each
part of the token deployment ecosystem.

3 Dutch-auction Dynamic Bonding Curves
Dutch-auction Dynamic Bonding Curves blend together two well-
studied mechanisms in blockchain-based markets - dutch auctions
and bonding curves.

3.1 Background
Dutch auctions are a well-understood auction format, and have
been studied deeply for blockchain-based markets in pieces such
as Frankie (2022) [7] and Moallemi (2024) [9]. Dutch auctions are
descending price auctions, where the auction starts at a high price
and decays until a market clearing price is found. They are gener-
ally utilized within onchain markets due to their efficient imple-
mentation and "shill-proof" properties [8]. The descending price
structure of Dutch auctions naturally mitigates the information
asymmetry challenges inherent in blockchain markets, where bid
revelation carries both explicit costs through gas fees and implicit
costs through information leakage. Dutch auctions provide market
participants with clear decision boundaries, enabling more efficient
price discovery while minimizing strategic gaming opportunities.

On the other hand, bonding curves are another widely used
blockchain-based markets primitive, which attempts to mimic the
laws of supply and demand. As previously stated, static bonding
curves have significant issues around determining the optimal start-
ing levels. Too low a starting price, and significant value is lost due
to the instantaneous arbitrage. Additionally, this value is lost to pro-
grammatic users who will instantly dump on other users, causing
losses for users who desire long-term exposure to that ecosystem.
For context, instantaneous arbitrage has cost token deployers over
+$100 million dollars on Ethereummainnet over the last year2. Like-
wise, instantaneous arbitrage and MEV have cost more than $400m
2Source: https://dune.com/queries/3682272/6193594

from users on pumpdotfun on Solana3. Too high and trades never
occur, but this is heavily mitigated by the dutch auction mechanism.

3.2 Implementation
The dutch-auction dynamic bonding curve has two phases

• Rapid price decrease until an initial market clearing price
is found

• Once a lower bound price is found, the expected price ramps
up slowly using the dynamic bonding curve

The optimal price curve is shown below. The price of the mar-
ginal token rapidly decreases until users begin buying, and the
bonding curve behavior begins. This market behavior encourages
the starting price of the dutch auction to be higher than "the market
price", limiting losses from instantaneous arbitrage.

It is important to note that if the price were to start "too low",
the descending price auction would not occur, and the dynamic
bonding curve behavior would begin. There is no requirement in
this mechanism for the descending price behavior - it is simply
encouraged to maximize eventual liquidity. However, a significant
price movement would cause the bonding curves to shift upward
in a process that will be described in a later section.

𝑡𝑖𝑚𝑒

𝑝𝑟𝑖𝑐𝑒

Figure 1: Optimal price curve

3.2.1 Liquidity Provision In order to protect against instantaneous
arbitrage, Doppler streams liquidity into the pool at a configurable
rate at each time. We define this liquidity at time 𝑡 as 𝜆𝑡 . While the
current implementation utilizes a constant streaming rate at epoch
boundaries, this is only to simplify the code base.

The protocol tracks two critical liquidity metrics: the expected
tokens sold (𝜆𝑡 ) and realized amount of "net-sold" tokens (𝜆𝑡 ). The
latter metric tracks tokens held outside the bonding curve system,
providing a crucial measure of market absorption capacity. The
3Source: https://x.com/0xngmi/status/1823399442306801974

2



Doppler: A liquidity bootstrapping ecosystem

differential between these metrics serves as a primary input for the
dynamic adjustment of price curves over time.

3.2.2 Dutch Auction The dutch auction handles the decrease in
price of tokens within the system. To start, the beginning price
and end price of the dutch auction behavior is configurable by
an interface that submits the trade. Interfaces may adjust these
parameters depending on the expected starting price, potential
volatility of the token, or based on broader market conditions.

Similar to other dutch auction protocols like UniswapX [5] or
1inch Fusion [1], Doppler uses a step-wise decaying function. In
practice, due to tickSpacing in Uniswap v4, the price may not
actually decay until it has passed a tickSpacing.

𝑡𝑖𝑚𝑒

𝑡𝑖𝑐𝑘

maxTick

minTick

Figure 2: Target tick decay over time

Notice that the y-axis in Figure 2 says tick. Due to implementa-
tion details of Uniswap v4, it is easier to decay the price in log-space.
This is implemented through a linear decay of the underlying ticks
from a given maxTick to a given minTick, which are then mapped
into the price using concentrated liquidity math.

Ideally, the decay should never reach minTick, as the bonding
curve (described below) should take over price discovery. If the end
of the sale time is reached and the required proceeds are not met,
users are refunded a pro-rata share of the pool holdings if under the
minimum threshold. Above this threshold will cause the liquidity
to be sent to Uniswap v2 in the current design. The natural state
of the pool is decaying to minTick, which will occur if no tokens
are purchased.

To support price movements caused by both the dutch auc-
tion and the dynamic bonding curve, the hook contract keeps
an tickAccumulator that aggregates tick adjustments from both
mechanisms.

Since we are linearly dutch auctioning, we can define the max
decrease as such

𝑚𝑎𝑥𝐷𝑒𝑙𝑡𝑎 =
𝑚𝑎𝑥𝑇𝑖𝑐𝑘 −𝑚𝑖𝑛𝑇𝑖𝑐𝑘

𝑒𝑛𝑑𝑖𝑛𝑔𝑇𝑖𝑚𝑒 − 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑇𝑖𝑚𝑒
· 𝑒𝑝𝑜𝑐ℎ𝐿𝑒𝑛𝑔𝑡ℎ (3.1)

At each curve re-balance, the hook calculates expected amount
of tokens from the liquidity function, 𝜆𝑡 , sold from the previous
epoch to the current and the realized amount sold, 𝜆𝑡 . There are
three states depending on the amount of tokens that are sold

𝑡𝑖𝑐𝑘𝐷𝑒𝑙𝑡𝑎𝑡 :=


𝑚𝑎𝑥𝐷𝑒𝑙𝑡𝑎 𝜆𝑡 − 𝜆𝑡 ≤ 0
𝑚𝑎𝑥𝐷𝑒𝑙𝑡𝑎·𝜆𝑡

𝜆𝑡
0 < 𝜆𝑡 < 𝜆𝑡

𝑡𝑖𝑐𝑘𝐷𝑒𝑙𝑡𝑎𝑢,𝑡 𝜆𝑡 ≥ 𝜆𝑡

(3.2)

Note that 𝑡𝑖𝑐𝑘𝐷𝑒𝑙𝑡𝑎𝑢,𝑡 will be defined in the Bonding Curve section.
The tickDelta is added to the tickAccumulator during the re-

balance of the curve, which is the accumulation of each tickDelta
from start to time 𝑡 .

𝑡𝑖𝑐𝑘𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟𝑡 =

𝑡∑︁
𝑖=0

𝑡𝑖𝑐𝑘𝐷𝑒𝑙𝑡𝑎𝑖 (3.3)

If the tickDelta is 0, then exactly the expected number of tokens
were sold.

3.2.3 Dynamic Bonding Curves The dutch auction attempts to
decay until the market finds the "market clearing" bonding curve.
The decay from the dutch auction acts like an impulse downward,
which is countered by buy pressure (which raises the price), while
the upward target price of the pool is determined by current active
bonding curve. We refer to the current active bonding curve as the
bonding curve that the pool is checking its current price against.

Figure 3: Dynamic Bonding Curves with 𝛾 = 500

First, we define the origin tick of the bonding curve, 𝜏𝑡 . To calcu-
late this, Doppler takes the startingTick and adds the tickAccumulator.
Note that the startingTick is either minTick or maxTick depend-
ing on if the sold token is token0 or token1.

𝜏𝑡 = 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑇𝑖𝑐𝑘 + 𝑡𝑖𝑐𝑘𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟𝑡 (3.4)
Above you can see an example of a collection of bonding curves,

with the current active one in blue. The current bonding curve 𝑏𝑐 (𝑡)
can be calculated at any time from the origin tick (𝜏𝑡 ), a growth
parameter (𝛾 ), and the elapsed time (𝑡 ).

𝑏𝑐 (𝑡) = 𝛾 · (𝑡/𝑡𝑚𝑎𝑥 ) + 𝜏𝑡 (3.5)
3



Adams

Notice that 𝜏𝑡 is also the bottom/start of the bonding curve and
the slope of the bonding curve is given by 𝛾 . A higher 𝛾 means that
the bonding curve is steeper. Using the Uniswap v4 concentrated
liquidity math, the tick can be converted to price.

𝑝 (𝑡) = 1.0001𝑏𝑐 (𝑡 ) (3.6)
Checking the surrounding bonding curves is also trivial as they

are a constant tickSpacing away. The current bonding curve is
the position utilized by the pool for liquidity provision.

As time progresses in the pool, the current price must drift up-
ward or downward, thus the desired bonding curve may change.
To calculate when we should change the bonding curve, we can
calculate the indifference curve between the current bonding curve
against its two surrounding curves. Let 𝜏𝑡 be the current starting
tick at time 𝑡 . We can define the two boundary curves, 𝑏𝑢 (𝑡) and
𝑏𝑙 (𝑡)

𝑏𝑢 (𝑡) = 𝛾 · (𝑡/𝑡𝑚𝑎𝑥 ) + (𝜏𝑡 + 𝑡𝑖𝑐𝑘𝑆𝑝𝑎𝑐𝑖𝑛𝑔/2) (3.7)
𝑏𝑙 (𝑡) = 𝛾 · (𝑡/𝑡𝑚𝑎𝑥 ) + (𝜏𝑡 − 𝑡𝑖𝑐𝑘𝑆𝑝𝑎𝑐𝑖𝑛𝑔/2) (3.8)

At the end of the epoch, if there was enough or extra tokens sold,
we then want to increase the current target bonding curve. In this
case, We calculate the current spot position of pool, 𝑖𝑐 , against the
expected position on the bonding curve.

𝑡𝑖𝑐𝑘𝐷𝑒𝑙𝑡𝑎𝑢,𝑡 = 𝑖𝑐 − (𝛾 · (𝑡/𝑡𝑚𝑎𝑥 ) + 𝜏𝑡 ) (3.9)
We then adjust the tickDelta to be on a boundary defined by

the tickSpacing of the pool. This adjustment functions similarly
to the indifference curves defined above.

3.2.4 Position Strategy As previously described, Doppler streams
liquidity into the pool according to a pre-described formula 𝜆𝑡 . At
each time period, Doppler calculates the current amount of net-
sold tokens, 𝜆𝑡 and the amount of tokens expected to be sold before
the next epoch, 𝜆𝑡+1. This amount of tokens is placed between the
current tick, 𝑖𝑐 and the 𝑏𝑐 (𝑡 + 1), which is the expected price of the
pool at the next epoch. If (𝜆𝑡+1 − 𝜆𝑡 ) ≤ 0, this position is skipped.

Next, Doppler calculates the expected amount of tokens sold
between the next epoch 𝜆𝑡+1 and the epoch after that 𝜆𝑡+2. This
liquidity is placed from either the top of the previous position or the
current tick, and then to the 𝛾 + 𝜏𝑡 , which is the top of the current
bonding curve.

3.2.5 Implementation Details In Uniswap v4, 𝑖𝑐 is the current tick
of the pool, determined through swapping. It is reasonable to ask if
the pool bonding curve can be manipulated as 𝑖𝑐 is the spot price
of the pool.

Because the bonding curve is set in the beforeSwap hook in
Uniswap v4, the hook is able to respond to manipulations during
their execution (and cannot be censored). Because of this, a ma-
nipulator would lose funds from the shifting of the bonding curve,
functioning as limit orders which are a strong mitigation to manip-
ulations. Additionally, the portion of the bonding curve that allows
selling of the tokens back may disjoint itself in a process described
below.

On Ethereum mainnet (or any chain without strong censorship
resistance[6]), it is possible for multiple slots in a row to be pur-
chased by a manipulator (multi-blockMEV). This actor could censor

buy transactions until the price of the pool decreases, locking in
a lower than market clearing price. A mitigation to this attack is
that the price increase defined by the provided 𝛾 should always
be greater than maxDelta. Additionally, a chain could be utilized
with censorship resistance, meaning that that this censorship would
always lose to in priority gas auction for a backrun. This is because
the rebalances occur before the first trade of the epoch, meaning
that manipulations would need to span blocks and epochs. In prac-
tice, extractive multi-block MEV is rare on Ethereum mainnet due
to validators’ incentives. This problem is not present on any chain
with censorship resistance, like most Layer 2 protocols.

One key design decision is to keep both tokens in the pool fully
liquid at all times. However, it is possible that the current bonding
curve does not have enough quote token liquidity to support 𝑏𝑐 (𝑡)
from 𝜏𝑡 to 𝑖𝑐 . This is likely from a misspecified starting price or
rapid price appreciation (either manipulations or naturally).

If the pool is in this state, then we utilize two different 𝑏𝑐 (𝑡)
above and below the current 𝑖𝑐 . The only way to move the 𝑖𝑐 down
would be selling tokens into the pool. In this state, we create a one
tickSpacing-wide position at the price which supports a theoreti-
cal liquidation of the entire net-sold liquidity amount, 𝜆𝑡 . This is to
discourage run behavior and give a common clearing price to all
users who wish to sell back their tokens.

4 Airlock and Factory Modules
The Doppler ecosystem implements a modular architecture cen-
tered around an airlock contract that serves as the primary entry
point for system integration. This design enables seamless progres-
sion from token deployment to fully operational AMM markets
while maintaining robust security guarantees.

4.1 Core Architecture
The airlock contractmanages system progression through a "turnkey"
mechanism that coordinates the sequential execution of module
functions. This orchestration allows the system to automatically
advance through deployment stages without requiring additional
user intervention. The modular design philosophy, inspired by
Uniswap v4’s hook architecture, separates core functionalities into
distinct, immutable contracts while maintaining system flexibility.

The ecosystem comprises four primary module types that inte-
grate with the airlock system:

• Token Factory
• Liquidity Factory
• Migration Factory
• Timelock Factory

The benefit of this system is the rapid creation of new user
actions while the previous code remains immutable for existing
developers. Users can additionally modify only one specific action
without editing others, supporting customization without requiring
the redeployment of the entire Protocol.

We will provide a quick overview of each factory.

4.1.1 Token Factory The token factory addresses a fundamental
challenge in decentralized markets: the proliferation of potentially
malicious token implementations. While the ERC20 standard de-
fines basic token functionality, its minimalist specification leaves

4



Doppler: A liquidity bootstrapping ecosystem

considerable room for harmful implementations. Traditional ap-
proaches rely on heuristic checks to identify malicious contracts,
creating an unsustainable arms race between security measures
and exploitation techniques. By using a factory, swappers and inte-
grators can trust that any arbitrary user-deployed contracts that
emerge from the factory will meet certain standards.

In the near future, new modules that allow even more trustless
customization will be created for the token factory, extending the
possible use-cases for integrators. We note that the Airlock contract
itself checks several invariants in the system to further mitigate pos-
sible attack vectors, but cannot reasonably check for every possible
attack.

4.1.2 Liquidity Factory The liquidity factory creates and facilitates
the entire process of generating the other token liquidity. While the
core Doppler Protocol uses Uniswap v4, the liquidity hook is fully
generalized to support the use of Uniswap v3 or any other AMM.

To interact with the liquidity factory, the Airlock facilitates the
call to the liquidity factory and seeds the chosen liquidity bootstrap-
ping pool (LBP) with a user-defined share of the token supply. The
Airlock can poke the LBP to return the quote asset to then initiate
the migration step. The LBP can additionally poke the Airlock to
power the turnkey. It is possible for the liquidity generation step to
fail if not enough proceeds are not generated, which is a parameter
defined by the user. In this case, the Airlock will not migrate the
liquidity.

To showcase the flexibility of the liquidity factory, a reference
implementation of a Uniswap v3 liquidity hook for Doppler is also
shown in the project’s GitHub.

4.1.3 Migration Factory Once required proceeds are generated
through the LBP as part of the liquidity factory, the Airlock pulls
the quote proceeds and remaining asset tokens to the migration
factory. The migration factory facilitates the creation of the gen-
eralized AMM position while minimizing MEV lost. The current
implementation targets Uniswap v2 as the destination protocol,
leveraging its proven stability and broad ecosystem support. How-
ever, the modular architecture enables future expansion to support
migrations to Uniswap v3, v4, or other AMM protocols as market
needs evolve.

4.1.4 Timelock Factory The timelock factory creates a trusted con-
tract for the token’s ecosystem, which is used to mitigate short-term
decision making for user safety. One big loss of value for a token’s
ecosystem is the burning of the LP shares done by most Protocols.
This causes significant loss for the Protocol and turns a potential
revenue generating asset into a drain. By creating a trusted contract
that is locked by code, users can trust the liquidity for their project
will not be removed, but token holders can mitigate significant
losses to their ecosystem.

4.1.5 Vesting Modules Additionally, the portion of the tokens that
are typically reserved for the developers of the token project are
not given until the token project is fully liquid. Significant losses
to retail users have come from sells in the bonding curve phase. A
developer aiming for longer term support should be able to wait
for the token project leaving the bonding curve. Plus, once a token
project leaves the bonding curve, the price impact of a developer
selling their shares is not as impactful due to the liquidity not being

concentrated. We have also seen many token projects recover from
the original developer selling their shares when the token project
is liquid.

5 Protocol and Interface Fee Structure
Doppler implements a balanced fee structure designed to align in-
centives between protocol stakeholders while maintaining competi-
tive market dynamics. The system incorporates both protocol-level
and interface-level fees, with built-in mechanisms to ensure fair
value distribution across the ecosystem.

5.1 Core Fee Architecture
The protocol establishes a maximum combined fee ceiling of 250
basis points (bps) to maintain market efficiency. Within this frame-
work, Doppler’s base protocol fee follows a dynamic structure: the
protocol receives either 10 bps or 10% of the interface fee, whichever
generates higher revenue. This design creates a sustainable funding
mechanism for ongoing protocol development while preserving
competitive market dynamics.

5.1.1 Interface Fee Implementation The fee structure allows inter-
face providers to capture up to 225 bps in fees, creating substantial
incentives for interface development and ecosystem growth. This
generous interface fee allocation serves a strategic purpose: it en-
courages interface consolidation around standardized implementa-
tions, which enhances both trading safety and asset discoverability
across the ecosystem.

By establishing significant interface fee potential, the protocol
motivates developers to focus on interface optimization rather than
competing through divergent market structures. This consolidation
effect benefits the broader ecosystem by reducing market fragmen-
tation and improving the overall trading experience.

5.1.2 Migration and Liquidity Fee Distribution The migration fac-
tory implements an additional 5% fee on swap activity, with the
remaining fee revenue directed to the timelock contract. This fee
split ensures sustainable funding for protocol maintenance while
preserving significant value for long-term liquidity providers.

5.2 Design Vision
The fee structure’s design produces several key benefits for the
ecosystem.

First, the generous interface fee allowance encourages the de-
velopment of high-quality interfaces, improving the overall user
experience. By enabling meaningful revenue capture for interface
providers, the protocol promotes investment in superior trading
tools and safety mechanisms.

Second, the fee structure’s emphasis on interface creation helps
establish consistent standards across the ecosystem. This standard-
ization simplifies the trading experience for users while reducing
the technical overhead required to interact with multiple disparate
systems.

The combination of protocol and interface fees creates a sustain-
able economicmodel that supports continued protocol development
while maintaining competitive market dynamics. This balanced
approach ensures the long-term viability of the ecosystem while
preserving sufficient incentives for all participants."

5

https://github.com/whetstoneresearch/doppler/tree/main


Adams

6 Summary
Doppler represents a significant advancement in decentralized mar-
ket infrastructure, introducing a comprehensive solution for the
persistent challenges of liquidity bootstrapping and price discov-
ery. The protocol’s core innovation lies in its hybrid Dutch auction
and dynamic bonding curve mechanism. This combination creates
an efficient price discovery process that protects against common
exploitation vectors while enabling automated market formation.
Doppler’s modular architecture extends beyond price discovery to
address the broader challenges of market formation. The system’s
factory modules enable standardized token deployment with ver-
ifiable bytecode, automated liquidity provision, and high-quality
standards.

References
[1] 1inch. 2022. Fusion. Retrieved Jul 16, 2024 from https://docs.1inch.io/docs/fusion-

swap/introduction/
[2] Hayden Adams, Moody Salem, Noah Zinsmeister, Sara Reynolds, Austin Adams,

Will Pote, Mark Toda, Alice Henshaw, Emily Williams, and Dan Robinson. 2023.
Uniswap v4 Core [Draft]. https://github.com/Uniswap/v4-core/blob/main/docs/
whitepaper-v4.pdf

[3] Hayden Adams, Noah Zinsmeister, and Dan Robinson. 2020. Uniswap v2 Core.
Retrieved Jun 12, 2023 from https://uniswap.org/whitepaper.pdf

[4] Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robin-
son. 2021. Uniswap v3 Core. Retrieved Jun 12, 2023 from https://uniswap.org/
whitepaper-v3.pdf

[5] Hayden Adams, Noah Zinsmeister, Mark Toda, Emily Williams, Xin Wan, Matteo
Leibowitz, Will Pote, Allen Lin, Eric Zhong, Zhiyuan Yang, Riley Campbell,
Alex Karys, and Dan Robinson. 2023. Uniswapx. Retrieved Jul 16, 2024 from
https://uniswap.org/whitepaper-uniswapx.pdf

[6] Elijah Fox, Mallesh Pai, and Max Resnick. 2023. Censorship Resistance in On-
Chain Auctions. arXiv:2301.13321 https://arxiv.org/abs/2301.13321

[7] Frankie, Dan Robinson, DaveWhite, and andy8052. 2022. Gradual Dutch Auctions.
Retrieved Jul 16, 2024 from https://www.paradigm.xyz/2022/04/gda

[8] Andrew Komo, Scott Duke Kominers, and Tim Roughgarden. 2024. Shill-Proof
Auctions. arXiv:2404.00475 [econ.TH] https://arxiv.org/abs/2404.00475

[9] Ciamac C Moallemi and Dan Robinson. 2024. Loss-Versus-Fair: Efficiency of
Dutch Auctions on Blockchains. arXiv preprint arXiv:2406.00113 (2024).

[10] Sebeom Oh, Samuel Rosen, and Anthony Lee Zhang. 2023. Digital Veblen Goods.
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4042901

7 Disclaimers
No Legal, Financial, or Investment Advice. This document does
not constitute legal advice, financial advice, investment advice,
trading advice, or a recommendation of any kind by Doppler, its
affiliates, or any of their respective officers, directors, managers,
employees, agents, advisors, or consultants. No information con-
tained herein should be relied upon as the basis for any investment
decision, contract, or any other decision regarding engagement
with Doppler or any of its projects.

Forward-Looking Statements. This document may contain
forward-looking statements based on assumptions and beliefs of
Doppler, its officers, or its affiliates. These statements are subject
to known and unknown risks, uncertainties, and other factors,
many of which are outside Doppler’s control, that may cause actual
outcomes to differ materially from the projections or expectations
set forth in such statements. Doppler makes no obligation to update
or revise any forward-looking statements to reflect subsequent
events, developments, or changes in circumstances after the date
on which such statements were made, except as required by law.

6

https://docs.1inch.io/docs/fusion-swap/introduction/
https://docs.1inch.io/docs/fusion-swap/introduction/
https://github.com/Uniswap/v4-core/blob/main/docs/whitepaper-v4.pdf
https://github.com/Uniswap/v4-core/blob/main/docs/whitepaper-v4.pdf
https://uniswap.org/whitepaper.pdf
https://uniswap.org/whitepaper-v3.pdf
https://uniswap.org/whitepaper-v3.pdf
https://uniswap.org/whitepaper-uniswapx.pdf
https://arxiv.org/abs/2301.13321
https://arxiv.org/abs/2301.13321
https://www.paradigm.xyz/2022/04/gda
https://arxiv.org/abs/2404.00475
https://arxiv.org/abs/2404.00475
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4042901

	Abstract
	1 Introduction
	2 Background
	3 Dutch-auction Dynamic Bonding Curves
	3.1 Background
	3.2 Implementation

	4 Airlock and Factory Modules
	4.1 Core Architecture

	5 Protocol and Interface Fee Structure
	5.1 Core Fee Architecture
	5.2 Design Vision

	6 Summary
	References
	7 Disclaimers

